Seorangpengamat berada di atas mercusuar yang tingginya 12 meter. la melihat kapal A dan B yang berlayar di laut. Jarak pengamat dengan kapal A dan B berturut-turut 20 meter dan 13 meter. Posisi kapal A , kapal B , dan kaki mercusuar terletak segaris. Jarak kapal A dan kapal B
MatematikaGEOMETRI Kelas 7 SMPSUDUT DAN GARIS SEJAJARMenggambar dan Mengukur SudutSeorang pengamat berada di atas mercusuar yang tingginya 12 meter. Ia melihat kapal P dan Q yang berlayar di laut. Jarak pengamat dengan kapal P dan Q berturut-turut 20 meter dan 13 meter. Posisi kapal P, kapal Q, dan kaki mercusuar terletak segaris. Jarak kapal P dan kapal Q adalah ....Menggambar dan Mengukur SudutSUDUT DAN GARIS SEJAJARGEOMETRIMatematikaRekomendasi video solusi lainnya0126Perhatikan gambar berikut! 3x+15 2x+10 Besar pelurus ...Perhatikan gambar berikut! 3x+15 2x+10 Besar pelurus ...01226x 2x 7x Pada gambar di atas, DO tegak lurus AO. Besar su...6x 2x 7x Pada gambar di atas, DO tegak lurus AO. Besar su...0132Perhatikan gambar tersebut merupakan cara ...Perhatikan gambar tersebut merupakan cara ...0316Tentukan besar sudut yang dibentuk oleh jarum panjang dan...Tentukan besar sudut yang dibentuk oleh jarum panjang dan...

ElektabilitasAnis berada di peringkat atas dari sekian nama yang muncul. Nama Anis mengikuti nama Prabowo Subianto dan Ganjar Prawono tertinggi elektabilitasnya untuk maju di Pilpres 2024.

BerandaSeorang pengamat di ruang angkasa yang bergerak de...PertanyaanSeorang pengamat di ruang angkasa yang bergerak dengan kecepatan 0,9 c sedang mengamati sebuah kapal yang panjangnya 100 m. Jika pesawat bergerak searah panjang kapal, maka panjang kapal hasil pengukuran pengamat adalah …Seorang pengamat di ruang angkasa yang bergerak dengan kecepatan 0,9 c sedang mengamati sebuah kapal yang panjangnya 100 m. Jika pesawat bergerak searah panjang kapal, maka panjang kapal hasil pengukuran pengamat adalah …95,43 m93,54 m59,34 m43,59 m34,59 mRAMahasiswa/Alumni Universitas PadjadjaranJawabanjawaban yang tepat adalah opsi yang tepat adalah opsi terlebih dahulu faktor Lorentz , Panjang kapal menurut pengamat “bergerak” dinyatakan sebagai Jadi, jawaban yang tepat adalah opsi terlebih dahulu faktor Lorentz , Panjang kapal menurut pengamat “bergerak” dinyatakan sebagai Jadi, jawaban yang tepat adalah opsi D. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!KOKarlia OctavianyMakasih ❤️©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
DOKMI. Ilustrasi korban meninggal. SEORANG siswa sekolah dasar (SD) kelas 3 berinisial IHM, 9 tahun, warga Desa Kiarapayung, Kecamatan Rancah, Kabupaten Ciamis, Jawa Barat, meninggal dunia di rumahnya dengan luka bakar di bagian dada, Rabu (3/8) sekitar pukul 14.00 WIB. Korban meninggal diduga karena ponsel yang dipakainya meledak.
Soal dan Pembahasan Bangun Datar Segitiga merupakan pembahasan soal-soal khusus tentang segitiga dengan segala bentuk persoalannya. Pada pembahasan ini, penekanan adalah cara menghitung sudut dalam dan sudut luar segitiga serta luas dan keliling segitiga. Sebelum berbicara tentang soal dan pembahasan, sebaiknya kita lakukan ulasan singkat tentang materi ini supaya adik-adik yang sudah agak lupa tentang segitiga bisa mengingat kembali hal-hal mengenai materi segitiga ini. Daftar isi 1 Pengertian dan Jenis-jenis Segitiga 2 Garis-garis Istimewa Pada Segitiga 3 Rumus Luas dan Rumus Keliling Segitiga 4 Rumus Sudut Luar Segitiga 5 Contoh Soal dan Pembahasan Bangun Datar Segitiga Pengertian dan Jenis-jenis SegitigaBangun datar segitiga adalah bangun dua dimensi yang dibatasi oleh tiga buah sisi. Segitiga bisa dibedakan berdasarkan panjang sisi-sisinya dan besar sudut-sudutnya.$\bullet$ Jika ditinjau dari panjang sisi-sisinya, bangun datar segitiga dibagi atas tiga bagian, yaitu 1. Segitiga sembarang. Segitiga sembarang memiliki panjang sisi-sisi yang berbeda. $AB ≠ BC ≠ AC$ $\angle A + \angle B + \angle C = 180^o$ 2. Segitiga sama kaki. Segitiga sama kaki adalah segitiga yang memiliki dua buah sisi sama panjang dan dua buah sudut sama besar. $AC = BC$ $\angle A = \angle B$ $\angle A + \angle B + \angle C = 180^o$ 3. Segitiga sama sisi. Segitiga sama sisi adalah segitiga yang ketiga sisi-sisinya sama panjang, dan ketiga sudutnya sama besar yang besarnya adalah $60^o$. $AB = BC = AC$ $\angle A = \angle B = \angle C = 60^o$ $\bullet$ Jika ditinjau dari besar sudutnya, segitiga dibagi atas tiga bagian, yaitu 1. Segitiga lancip. Segitiga lancip adalah segitiga yang ketiga sudutnya lebih kecil dari $90^o$. $\angle A 90^o$ $\angle B AB^2 + AC^2$ Garis-garis Istimewa Pada Segitiga1. Garis Tinggi. Garis tinggi adalah garis lurus yang ditarik dari titik sudut segitiga dan tegak lurus sisi yang di depannya. CE disebut garis tinggi. 2. Garis Bagi. Garis bagi adalah garis lurus yang ditarik dari titik sudut segitiga dan membagi dua sudut tersebut sama besar. AE disebut garis bagi. 3. Garis Sumbu. Garis sumbu adalah garis lurus yang mememotong titik tengah sisi suatu segitiga secara tegak lurus. DE disebut garis sumbu. 4. Garis Berat. Garis berat adalah garis lurus yang ditarik dari titik sudut suatu segitiga dan membagi dua sisi yang di depannya sama panjang. CD disebut garis berat. Rumus Luas dan Rumus Keliling Segitiga AB disebut alas CE disebut tinggi $Luas = \dfrac{1}{2}\ \times\ alas\ \times\ tinggi$ $Jika\ alas = a\ dan\ tinggi = t,\ maka$ $Luas = \dfrac{1}{2}at$ $Keliling = AB + BC + AC$ Note Panjang salah satu sisi segitiga harus lebih kecil dari jumlah kedua sisi yang lain. $AB < BC + AC$ $BC < AB + AC$ $AC < AB + BC$ Sudut terbesar selalu menghadap sisi terpanjang. Sudut terkecil selalu menghadap sisi terpendek. Sudut yang sedang menghadap sisi yang sedang. Rumus Sudut Luar SegitigaBesar sudut luar suatu segitiga sama dengan besar sudut dalam yang tidak berpelurus dengan sudut luar tersebut. Perhatikan gambar ! $\angle ABD\ dan\ \angle BCE$ adalah sudut luar segitiga ABC. $\angle ABD + \angle ABC = 180^o$ . . . . 1 $\angle BAC + \angle ACB + \angle ABC = 180^o$ . . . . 2 Dari persamaan 1 dan 2 $\angle ABD + \angle ABC = \angle BAC + \angle ACB + \angle ABC$ $\angle ABD = \angle BAC + \angle ACB$ Dengan cara yang sama, $\angle BCE = \angle BAC + \angle ABC$ Contoh Soal dan Pembahasan Bangun Datar Segitiga1. Diketahui sudut-sudut sebuah segitiga adalah $60^o$ dan $80^o$, maka besar sudut yang lain adalah . . . . $A.\ 30^o$ $B.\ 40^o$ $C.\ 50^o$ $A.\ 60^o$ Sudut dalam segitiga besarnya adalah $180^o$. Misalkan besar sudut yang lain adalah $x$, maka $\begin{align*} 60^o + 80^o + x &= 180^o\\ 140^o + x &= 180^o\\ x &= 180^o - 140^o\\ x &= 40^o → B. \end{align*}$ 2. Perhatikan gambar ! Besar sudut B adalah . . . . $A.\ 45^o$ $B.\ 55^o$ $C.\ 60^o$ $D.\ 75^o$ $\begin{align*} \angle A + \angle B + \angle C &= 180^o\\ 60^o + 3x^o + 5x^o &= 180^o\\ 60^o + 8x^o &= 180^o\\ 8x^o &= 180^o - 60^o\\ 8x^o &= 120^o\\ x &= 15\\ \angle B &= 3x^o\\ &= &= 45^o → A. \end{align*}$ 3. Besar sudut-sudut sebuah segitiga adalah $2x^o$, $x + 30^o$, dan $2x + 50^o$. Nilai $x$ adalah . . . . A. 5 B. 10 C. 15 D. 20 $\begin{align*} 2x^o + x + 30^o + 2x + 50^o &= 180^o\\ 2x + x + 30 + 2x + 50 &= 180\\ 5x + 80 &= 180\\ 5x &= 180 - 80\\ 5x &= 100\\ x &= 20 → D. \end{align*}$ 4. Diketahui segitiga sama kaki ABC, AC = BC. Jika besar $\angle ABC = 50^o$, maka besar $\angle ACB =$ . . . . $A.\ 80^o$ $B.\ 100^o$ $C.\ 120^o$ $D.\ 125^o$ Perhatikan gambar ! Karena AC = BC, maka $\angle A = \angle B = 50^o$ Sudut dalam segitiga besarnya $180^o$ $\begin{align*} \angle A + \angle B + \angle C &= 180^o\\ 50^o + 50^o + \angle C &= 180^o\\ 100^o + \angle C &= 180^o\\ \angle C &= 180^o - 100^o\\ \angle C &= 80^o → A. \end{align*}$ 5. Perhatikan Gambar ! Jika besar $\angle A = 40^o$, maka besar $\angle ACB$ adalah . . . . $A.\ 10^o$ $B.\ 20^o$ $C.\ 30^o$ $D.\ 50^o$ $\begin{align*} \angle A = \angle ADC &= 40^o\\ \angle A + \angle ADC + \angle ACD &= 180^o\\ 40^o + 40^o + \angle ACD &= 180^o\\ 80^o + \angle ACD &= 180^o\\ \angle ACD &= 180^o - 80^o\\ \angle ACD &= 100^o\\ \angle ADC + \angle BDC &= 180^o\\ 40^o + \angle BDC &= 180^o\\ \angle BDC &= 180^o - 40^o\\ \angle BDC &= 140^o\\ \end{align*}$ $Karena\ segitiga\ BCD\ sama\ kaki$ $\begin{align*} maka\ \angle B &= \angle BCD\\ Misalkan\ sudut\ B &= n\\ \angle B + \angle BDC + \angle BCD &= 180^o\\ n + 140^o + n &= 180^o\\ 2n &= 180^o - 140^o\\ 2n &= 40^o\\ n &= 20^o → B. \end{align*}$ 6. Segitiga PQR adalah segitiga sama kaki dengan PR = QR dan $\angle P\ \ \angle R = 3\ \ 4$. Besar $\angle Q$ adalah . . . . $A.\ 36^o$ $B.\ 48^o$ $C.\ 54^o$ $D.\ 72^o$ Perhatikan gambar! Karena PR = QR, maka $\angle P = \angle Q$ Misalkan sudut P = 3n, maka sudut Q = 3n, dan sudut R = 4n $\begin{align*} \angle P + \angle Q + \angle R &= 180^o\\ 3n + 3n + 4n &= 180^o\\ 10n &= 180^o\\ n &= 18^o\\ \angle Q &= 3n\\ &= &= 54^o → C. \end{align*}$ 7. Segitiga KLM adalah segitiga sama kaki, dimana KL = LM. Jika kililing segitiga KLM = 60 cm dan panjang KM = 30 cm, maka panjang KL = . . . . A. 5 cm B. 10 cm C. 15 cm D. 20 cm $Misalkan\ panjang\ KL = LM = p$ $\begin{align*} Keliling &= KL + LM + KM\\ 60 &= p + p + 30\\ 60 &= 2p + 30\\ 60 - 30 &= 2p\\ 30 &= 2p\\ 15 &= p\\ Panjang\ KL &= p\\ &= 15\ cm → C. \end{align*}$ 8. Diketahui Keliling $\Delta PQR = 180\ cm$. Jika $PQ\ \ QR\ \ PR = 2\ \ 3\ \ 4$, maka panjang $QR =$ . . . . $A.\ 40\ cm$ $B.\ 50\ cm$ $C.\ 60\ cm$ $D.\ 80\ cm$ $\begin{align*} Misalkan\\ PQ &= 2n\\ QR &= 3n\\ PR &= 4n\\ Keliling &= PQ + QR + PR\\ 180 &= 2n + 3n + 4n\\ 180 &= 9n\\ 20 &= n\\ QR &= 3n\\ &= &= 60\ cm → C. \end{align*}$ 9. Panjang alas suatu segitiga = 16 cm, dan tingginya = 8 cm. Luas segitiga tersebut adalah . . . . $A.\ 64\ cm^2$ $B.\ 48\ cm^2$ $C.\ 42\ cm^2$ $D.\ 36\ cm^2$ $Luas = \dfrac{1}{2}\ \times\ alas\ \times\ tinggi$ $Luas = \dfrac{1}{2}\ \times\ 16\ \times\ 8$ $Luas = 64\ cm^2$ → A. 10. Perhatikan gambar ! Luas segitiga pada gambar di atas adalah . . . . $A.\ 18\ cm^2$ $B.\ 24\ cm^2$ $C.\ 28\ cm^2$ $D.\ 32\ cm^2$ $\begin{align*} BC^2 &= AB^2 + AC^2\\ 10^2 &= AB^2 + 6^2\\ 100 &= AB^2 + 36\\ 100 - 36 &= AB^2\\ 64 &= AB^2\\ AB &= \sqrt{64}\\ AB &= 8\ cm\\ alas = AB &= 8\ cm\\ tinggi = AC &= 6\ cm\\ L &= \dfrac{1}{2}. &= &= 24\ cm^2 → B. \end{align*}$ Catatan Alas dan tinggi selalu saling tegak lurus. 11. Perhatikan gambar ! Luas segitiga di atas adalah . . . . $A.\ 24\ cm^2$ $B.\ 32\ cm^2$ $C.\ 36\ cm^2$ $D.\ 48\ cm^2$ AB → alas. CD → tinggi. $\begin{align*} AC^2 &= AD^2 + CD^2\\ 10^2 &= 6^2 + CD^2\\ 100 &= 36 + CD^2\\ 100 - 36 &= CD^2\\ 64 &= CD^2\\ CD &= \sqrt{64}\\ CD &= 8\ cm\\ Luas &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= &= 48\ cm^2 → D. \end{align*}$ 12. $\angle ABC\ siku-siku\ di\ A,$ ditarik garis k dari titik C ke titik tengah AB. Garis k dinamakan . . . . A. Garis bagi B. Garis berat C. Garis tinggi D. Garis sumbu [Soal UN] Garis yang ditarik dari titik sudut ke titik tengah sisi yang dihadapannya adalah garis berat. → B. 13. Sebuah segitiga dapat dibentuk dari tiga buah garis berukuran seperti dibawah. Tiga buah garis yang tidak mungkin membentuk sebuah segitiga adalah . . . . A. 5 cm, 6 cm, dan 8 cm B. 11 cm, 7 cm, dan 15 cm C. 3 cm, 4 cm, dan 5 cm D. 6 cm, 4 cm, dan 11 cm Panjang salah satu sisi tidak boleh lebih atau sama dengan jumlah panjang dua sisi yang lain. Lihat pilihan D ! 11 cm ≥ 6 cm + 4 cm Salah satu sisi lebih panjang dari jumlah dua sisi yang lain, sehingga tidak mungkin membentuk segitiga. Jawab D. 14. Perhatikan gambar ! Nilai x = . . . . A. 50 B. 55 C. 60 D. 65$\begin{align*} \angle ADB &= 180^o - 108^o\\ \angle ADB &= 72^o\\ \angle ADB + \angle BAD + \angle ABD &= 180^o . . . . 1\\ \angle ABD + \angle CBD &= 180^o . . . . 2\\ Dari\ persamaan\ 1\ dan\ 2\\ \angle ADB + \angle BAD + \angle ABD &= \angle ABD + \angle CBD\\ \angle ADB + \angle BAD &= \angle CBD\\ 48^o + 72^o &= 2x - 10^o\\ 120^o &= 2x - 10^o\\ 120 &= 2x - 10\\ 120 + 10 &= 2x\\ 130 &= 2x\\ 65 &= x → D. \end{align*}$ 15. Perhatikan gambar bangun yang terdiri dari jajargenjang dan segitiga siku-siku. Keliling bangun tersebut adalah . . . . A. 105 cm B. 120 cm C. 123 cm D. 156 cm [Soal UN 2018] $\begin{align*} BC = CD = AE &= 15\ cm\\ AC^2 &= AB^2 - BC^2\\ &= 39^2 - 15^2\\ &= 1521 - 225\\ &= 1296\\ AC &= \sqrt{1296}\\ AC &= 36\ cm\\ AC = DE &= 36\ cm\\ Keliling &= AB + BC + CD + DE + AE\\ &= 39 + 15 + 15 + 36 + 15\\ &= 120\ cm → B. \end{align*}$ 16. Seorang pengamat berada di atas mercusuar yang tingginya 12 meter. Ia melihat kapal A dan kapal B yang berlayar di laut. Jarak pengamat dengan kapal A dan kapal B berturut-turut 20 meter dan 13 meter. Posisi kapal A, kapal B, dan kaki mercusuar terletak segaris. Jarak kapal A dan kapal B adalah . . . . A. 7 meter B. 11 meter C. 12 meter D. 15 meter [Soal UN 2018] Perhatikan gambar ! $\begin{align*} AB^2 &= BD^2 - AD^2\\ &= 13^2 - 12^2\\ &= 169 - 144\\ &= 25\\ AB &= \sqrt{25}\\ AB &= 5\ meter\\ AC^2 &= CD^2 - AD^2\\ &= 20^2 - 12^2\\ &= 400 - 144\\ &= 256\\ AC &= \sqrt{256}\\ AC &= 16\ meter\\ BC &= AC - AB\\ &= 16 - 5\\ &= 11\ meter → B. \end{align*}$ 17. Diketahui keliling suatu segitiga 52 cm, dan panjang salah satu sisinya adalah 20 cm. Jika perbandingan sisi kedua dan ketiga adalah 1 3, maka panjang sisi-sisi segitiga tersebut adalah . . . . A. 6 cm, 20 cm, dan 30 cm B. 8 cm, 20 cm, dan 24 cm C. 10 cm, 20 cm, dan 22 cm D. 12 cm, 20 cm, dan 20 cm Misalkan segitiga yang dimaksud adalah segitiga ABC. $\begin{align*} K = 52\ dan\ AB &= 20\ cm\\ BC\ \ AC &= 1\ \ 3\\ Misalkan\ BC &= n\ dan\ AC = 3n\\ K &= AB + BC + AC\\ 52 &= 20 + n + 3n\\ 52 - 20 &= 4n\\ 32 &= 4n\\ 8 &= n\\ BC = n &= 8\ cm\\ AC = 3n = &= 24\ cm\\ \end{align*}$ Maka sisi-sisi segitiga tersebut adalah 8 cm, 20 cm, dan 24 cm. → B. 18. Perhatikan gambar ! Besar $\angle BAC$ adalah . . . . $A.\ 30^o$ $B.\ 40^o$ $C.\ 50^o$ $D.\ 60^o$ $\begin{align*} \angle BAC &= 180^o - 5x^o\\ \angle BCE &= \angle BAC + \angle ABC\\ 3x - 20^o &= 180^o - 5x^o + 40^o\\ 3x - 20 &= 180 - 5x + 40\\ 3x + 5x &= 180 + 40 + 20\\ 8x &= 240\\ x &= 30\\ \angle BAC &= 180^o - &= 180^o - 150^o\\ &= 30^o → A. \end{align*}$ 19. Perhatikan gambar ! Diketahui panjang BD = 12 cm, AE = 10 cm, dan CE = 16 cm. Luas bangun ABCD adalah . . . . $A.\ 156\ cm^2$ $B.\ 146\ cm^2$ $C.\ 136\ cm^2$ $D.\ 126\ cm^2$ $Perhatikan\ segitiga\ ABD\ !$ $\begin{align*} alas &= BD\\ tinggi &= AE\\ Luas &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 60\ cm^2\\ \end{align*}$ $Perhatikan\ segitiga\ BCD\ !$ $\begin{align*} alas &= BD\\ tinggi &= CE\\ Luas &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 96\ cm^2\\ Luas\ ABCD &= luas\ \Delta ABD + luas\ \Delta BCD\\ &= 60 + 96\\ &= 156\ cm^2 → A. \end{align*}$ 20. Perhatikan gambar ! Diketahui panjang AB = 16 cm, DF = 12 cm, CH = 12 cm, dan EG = 5 cm. Luas bangun ADEBCE adalah . . . . $A.\ 96\ cm^2$ $B.\ 108\ cm^2$ $C.\ 116\ cm^2$ $D.\ 148\ cm^2$ $\begin{align*} Luas\ \Delta ABD &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 96\ cm^2\\ Luas\ \Delta ABC &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 80\ cm^2\\ Luas\ \Delta ABE &= \dfrac{1}{2}. &= \dfrac{1}{2}. &= 40\ cm^2\\ Luas\ \Delta AED &= luas\ \Delta ABD - luas\ \Delta ABE\\ Luas\ \Delta AED &= 96 - 40\\ Luas\ \Delta AED &= 56\ cm^2\\ Luas\ \Delta BCE &= luas\ \Delta ABC - luas\ \Delta ABE\\ Luas\ \Delta BCE &= 80 - 40\\ Luas\ \Delta BCE &= 40\ cm^2\\ Luas\ ADEBCE &= luas\ \Delta AED + luas\ \Delta BCE\\ Luas\ ADEBCE &= 56 + 40\\ Luas\ ADEBCE &= 96\ cm^2. → A. \end{align*}$ Demikianlah soal dan pembahasan bangun datar segitiga. Selamat belajar !SHARE THIS POST Namunsaat pembalikan temperatur, udara hangat berada di atas udara dingin, membuat persepsi visual manusia terganggu. Lantaran udara dingin lebih padat dari udara hangat, maka sinar dari kapal itu dibengkokkan oleh udara dingin menuju ke mata pengamat.

1. Seorang pengamat berada di atas mercusuar yang tingginya 12 meter. Ia melihat kapal A dan kapal B yang berlayar di laut. Jarak pengamat dengan kapal A dan kapal B berturut-turut 20 meter dan 13 meter. Posisi kapal A, kapal B, dan kaki mercusuar terletak segaris. Jarak kapal A dan kapal B adalah...QuestionGauthmathier2373Grade 11 YES! We solved the question!Check the full answer on App GauthmathGauth Tutor SolutionUniversity of LagosMaster's degreeAnswerExplanationFeedback from studentsClear explanation 98 Excellent Handwriting 91 Easy to understand 72 Help me a lot 70 Detailed steps 52 Correct answer 34 Write neatly 26 Does the answer help you? Rate for it!Gauthmath helper for ChromeCrop a question and search for answer. Its faster!Still have questions? Ask a live tutor for help live Q&A or pic step-by-step access to all gallery Tutor Now

Soal Bagikan. Dari atas sebuah gedung seorang pengamat melihat benda A di atas permukaan tanah dengan sudut depresi 45^ {\circ} 45∘. Dari sisi yang sama, pengamat tersebut juga melihat benda B di atas permukaan tanah dengan sudut depresi 60^ {\circ} 60∘. Jika tinggi pengamatan 20 meter, maka jarak benda A dan B adalah \ldots .

Soal pembahasan UN Matematika SMP tahun pelajaran 2017/2018 no. 26-30. Soal No. 26 Pasangan sudut dalam sepihak pada gambar berikut adalah… A. 1 dan 5 B. 2 dan 6 C. 3 dan 8 D. 4 dan 7 Pembahasan Pasangan sudut dalam sepihak dari gambar di atas adalah sudut 2 dan 5, serta sudut 3 dan 8. Jawaban C. 3 dan 8 Soal No. 27 Perhatikan gambar huruf F dari karton! Luas bangun huruf F tersebut adalah… A. cm2 B. cm2 C. 984 cm2 D. 976 cm2 Pembahasan Huruf F dibagi tiga bagian seperti gambar! Luas i = 60 x 10 = 600 Luas ii = 12 x 20 = 240 Luas iii = 12 x 12 = 144 ————————— + Luas = 984 cm2 Jawaban C. 984 cm2 Soal No. 28 Perhatikan gambar bangun datar berikut! Diketahui panjang AF = EF = 10 cm, BC = 6 cm, dan DE = 2 cm. Keliling bangun tersebut adalah… A. 52 cmB. 48 cmC. 32 cmD. 18 cm PembahasanData soalBD = 10 – 2 = 8 cmBC = 6 cmCari DC, pythagorasDC = √82 + 62= √100 = 10 cm Keliling = AB + BC + CD + DE + EF + FA= 10 + 6 + 10 + 2 + 10 + 10= 48 cm Jawaban B. 48 cm Soal No. 29Seorang pengamat berada di atas sebuah mercusuar yang memiliki ketinggian 80 meter. Pengamat melihat kapal A dan kapal B. Jarak pengamat ke kapal A 100 meter dan jarak pengamat ke kapal B 170 meter. Posisi alas mercusuar, kapal A, dan kapal B segaris. Jarak antara kapal A dan kapal B adalah… A. 70 meterB. 80 meterC. 90 meterD. 110 meter PembahasanP^80 metervM——————- A ———– B Jarak mercusuar ke A MA= √1002 – 802 = 60 meter Jarak Mercusuar ke kapal B MB= √1702 – 802= √28900 – 6400= √22500 = 150 meter Dengan demikian jarak A ke B adalah= 150 m – 60 m= 90 meter Jawaban C. 90 meter Soal No. 30Perhatikan gambar! Besar sudut ADB adalah… A. 124o B. 118o C. 62o D. 59o Pembahasan Tarik garis dari titik C ke D dan A ke D seperti gambar berikut! Sudut ADC 90° karena sudut keliling menghadap diameter. Besar sudut CDB = setengah dari sudut COB = 31° Sehingga besar sudut ADB = 90 – 31 = 59°Jawaban D. 59°
Seorangpengamat berada di atas sebuah mercusuar yang memiliki ketinggian 80 m. Pengamat melihat kapal A dan kapal B. Jarak pengamat ke kapal A 100 m dan jarak pengamat ke kapal B 170 m. Posisi alas mercusuar, kapal A dan kapal B segaris. Jarak antara kapal A dan kapal B adalah 90 m. Teorema pythagoras berlaku pada segitiga siku-siku. Seorang pengamat berada di atas sebuah mercusuar yang memiliki ketinggian 80 m. Pengamat melihat kapal A dan kapal B. Jarak pengamat ke kapal A 100m dan jarak pengamat ke kapal B 170m. Posisi alas mercusuar, kapal A dan kapal B segaris. Jarak antara A dan kapal B adalah Seorang pengamat berada di atas sebuah mercusuar yang memiliki ketinggian 80 m. Pengamat melihat kapal A dan kapal B. Jarak pengamat ke kapal A 100 m dan jarak pengamat ke kapal B 170 m. Posisi alas mercusuar, kapal A dan kapal B segaris. Jarak antara kapal A dan kapal B adalah 90 m. Teorema pythagoras berlaku pada segitiga siku-siku. Misal sisi miring segitiga siku-siku adalah c, dan sisi-sisi siku-sikunya a dan b, maka berlaku rumus a² + b² = c² dari rumus tersebut, diperoleh rumus lainnya yaitu Pembahasan Perhatikan gambar pada lampiran Misal seorang pengamat berada di titik C CD = tinggi mercusuar = 80 m CA = 100 m CB = 170 m Perhatikan segitiga ADC, Jarak mercusuar ke kapal A adalah AD = m AD = m AD = m AD = m AD = 60 m Perhatikan segitiga BDC Jarak mercusuar ke kapal B adalah BD = m BD = m BD = m BD = m BD = 150 m Jadi jarak kapal A dan kapal B adalah AB = BD – AD AB = 150 m – 60 m AB = 90 m Pelajari lebih lanjut Contoh soal lain tentang teorema pythagoras - Detil Jawaban Kelas 8 Mapel Matematika Kategori Teorema Pythagoras Kode Kata Kunci Seorang pengamat berada di atas sebuah mercusuar yang memiliki ketinggian 80 m EKfB. 494 84 129 301 446 311 6 102 448

seorang pengamat berada di atas